If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12y^2+12y-1=0
a = 12; b = 12; c = -1;
Δ = b2-4ac
Δ = 122-4·12·(-1)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-8\sqrt{3}}{2*12}=\frac{-12-8\sqrt{3}}{24} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+8\sqrt{3}}{2*12}=\frac{-12+8\sqrt{3}}{24} $
| 7/p=3/5 | | 4(x-3)+x=-32 | | 7-4(9x+2)=3 | | x(2x-1)(x+1)^2=0 | | 0.5a^2+a+1=0 | | -49x^2-3=0 | | 3m=6+-10 | | —3-6x=9 | | 11x+5x-1=63x-36 | | 19-12d=-13-10d | | 17=4x+4-10x | | 14x+16=X+6+3x | | -3x+6=-2x | | -10u+18=5u-11u-6 | | 3x-17=-5x-1 | | 16x-5*4x+4=0 | | -g-11=-1+10+3g | | 45-10x^2=0 | | 10m+-2=-92 | | 2^-x=3x+10 | | Nx3=N/3 | | 2(2y+7)=30 | | 52x-3=23-5x | | -2.5z+2.15=-3.6z-18.2 | | 1=2/f | | 2x-1+2x+1=20 | | 4(3x+2)=6(4x-) | | -17t=-8-15t | | Y=-24x+5 | | -2x+-8=6 | | 7-14p=-17-12p | | 3-4(9x+6)=5. |